Making a clock seems to be a rite of passage for hobby electronics folks. The appeal is pretty obvious: straightforward functionality built with common components, and when you’re done, you have something that you can actually use in your daily life.
A little over a month ago, I had the idea for a clock project. But my clock is going to be a bit unusual. I’m designing an LED matrix clock that shows the current time by playing a different instance of Conway’s Game of Life every minute that evolves into the digital representation of the current minute. I’m going to call it the Cellular Chronometer.
This project concept hits the sweet spot for me in a number of ways. First and foremost, the challenge of making the Game of Life do my bidding is exactly the kind of deep, interesting algorithmic problem I love to tackle. I get to use all of my optimization and analysis skills to get a pretty cool result. Second, I am a sucker for designs that make use of cleverness to get a lot out of a little, so naturally I’ve been dying for a reason to build a Charlieplex, and this is the perfect opportunity. Finally, since this is something I want to actually put on display somewhere in my home or office, there’s a nice industrial design aspect to it. I want it to look well-made and polished when it’s finished.
Making an LED matrix should be pretty straightforward, as should be the “clock” behavior. I’m most familiar with Atmel microntrollers and the Arduino environment, so I’m going to use that for all the coding. Playing the Game of Life on a microcontroller is nothing new, but it’s probably impossible to search for prior game states on something with so little memory, so I’m planning to use my laptop to pre-compute all of the starting states that lead to my desired end states. And finally, I’m thinking that I’ll do the enclosure out of wood (either laser-cut or CNC-milled) so that I can finish it handsomely.
There are a lot of individual steps to this project, and I’m going to try to document them individually as I work through the project. Stay tuned for updates!